Quantum Mechanics¶
Normalized Schrodinger Equations for Hydrogen Atom¶
For each combination of quantum numbers (n, l, m), the solution of the Schrodinger equation is a product of a radial solution R(r) and an angular solution Y(\theta, \phi) of the form \Psi(r, \theta, \phi) = R(r) \cdot Y(\theta, \phi).
The naming of the atomic orbitals depends on the angular momentum quantum number l and the angular node(s) of the orbital.
To obtain the form required for real atomic orbital plots, linear combination of the complex angular wave functions has to be done such that:
Y_{l, \ norm}^{+m} = \frac{1}{\sqrt{2}}\left(Y^{-|m|}_{1}+(-1)^{m}Y^{|m|}_{1}\right) \text{for } m > 0\\ Y_{l, \ norm}^{-m} = \frac{i}{\sqrt{2}}\left(Y^{-|m|}_{1}-(-1)^{m}Y^{|m|}_{1}\right) \text{for } m < 0
n = 1, l = 0, m = 0¶
\begin{align*} R^{1}_{0}(r) &= 2a^{-\frac{3}{2}} \ \text{exp} \left(-\frac{r}{a}\right) \\ \because m = 0, \therefore Y^{0}_{0}(\theta, \phi) &= \sqrt{\frac{1}{4\pi}}\\ \Rightarrow \Psi_{100}(r, \theta, \phi) &= R^{1}_{0}(r)\cdot Y^{0}_{0}(\theta, \phi) \\ &= \frac{1}{\sqrt{\pi}}a^{-\frac{3}{2}} \ \text{exp} \left(-\frac{r}{a}\right) \end{align*}
n = 2, l = 0, m = 0¶
\begin{align*} R^{2}_{0}(r) &= \frac{1}{\sqrt{2}}a^{-\frac{3}{2}} \left(1-\frac{r}{2a}\right)\ \text{exp} \left(-\frac{r}{2a}\right) \\ \because m = 0, \therefore Y^{0}_{0}(\theta, \phi) &= \sqrt{\frac{1}{4\pi}} \\ \Rightarrow \Psi_{200}(r, \theta, \phi) &= R^{2}_{0}(r)\cdot Y^{0}_{0}(\theta, \phi) \\ &= \frac{1}{\sqrt{8\pi}}a^{-\frac{3}{2}} \left(1-\frac{r}{2a}\right)\ \text{exp} \left(-\frac{r}{a}\right) \end{align*}
n = 2, l = 1, m = -1¶
\begin{align*} R^{2}_{1}(r) &= \frac{1}{\sqrt{24}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right)\\ Y^{-1}_{1}(\theta, \phi) &= \sqrt{\frac{3}{8\pi}}\sin \theta \ \text{exp} \ (-i\phi)\\ \because m < 0, \therefore \text{Normalized angular solution, }Y^{-1}_{1, \ norm}(\theta, \phi)&=\frac{i}{\sqrt{2}}\left(Y^{-1}_{1}-(-1)^{-1}Y^{+1}_{1}\right)\\ &=\frac{i}{\sqrt{2}}\left(Y^{-1}_{1}+Y^{+1}_{1}\right)\\\\ &= \frac{i}{\sqrt{2}}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\right)\ (\text{exp} \ (-i\phi) -\ \text{exp} \ (i\phi)) \\ &= -\frac{i}{\sqrt{2}}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\sin\phi\right) \times 2i\\ &= \sqrt{2}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\sin\phi\right)\\ &= \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin \theta\sin\phi \end{align*}
\Rightarrow y = 0
\therefore \text{There is one angular node where y = 0, which is the xz nodal plane.}
\begin{align*} \Rightarrow \Psi_{21-1}(r, \theta, \phi) &= R^{2}_{1}(r)\cdot Y^{-1}_{1, \ norm}(\theta, \phi) \\ &= \frac{1}{4\sqrt{2\pi}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right)\sin \theta\sin\phi \end{align*}
n = 2, l = 1, m = 0¶
\begin{align*} R^{2}_{1}(r) &= \frac{1}{\sqrt{24}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right) \\ \because m = 0, \therefore Y^{0}_{1}(\theta, \phi) &= \sqrt{\frac{3}{4\pi}}cos \theta \\ \end{align*}
\Rightarrow z = 0
\therefore \text{There is one angular node where z = 0, which is the xy nodal plane.}
\begin{align*} \Rightarrow \Psi_{210}(r, \theta, \phi) &= R^{2}_{1}(r)\cdot Y^{1}_{0}(\theta, \phi) \\ &= \frac{1}{4}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right) \cos \theta \end{align*}
n = 2, l = 1, m = +1¶
\begin{align*} R^{2}_{1}(r) &= \frac{1}{\sqrt{24}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right)\\ \because m > 0, \therefore \text{Normalized angular solution, }Y^{+1}_{1, \ norm}(\theta, \phi)&=\frac{1}{\sqrt{2}}\left(Y^{-1}_{1}+(-1)^{1}Y^{+1}_{1}\right)\\ &=\frac{1}{\sqrt{2}}\left(Y^{-1}_{1}-Y^{+1}_{1}\right)\\ &= \frac{1}{\sqrt{2}}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\right)\ (\text{exp} \ (-i\phi) +\ \text{exp} \ (i\phi)) \\ &= \frac{1}{\sqrt{2}}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\cos\phi\right) \times 2\\ &= \sqrt{2}\left(\sqrt{\frac{3}{8\pi}}\sin \theta\cos\phi\right)\\ &= \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin \theta\cos\phi \end{align*}
\Rightarrow x = 0
\therefore \text{There is one angular node where x = 0, which is the yz nodal plane.}
\begin{align*} \Rightarrow \Psi_{21+1}(r, \theta, \phi) &= R^{2}_{1}(r)\cdot Y^{+1}_{1, \ norm}(\theta, \phi) \\ &= \frac{1}{4\sqrt{2\pi}}a^{-\frac{3}{2}} \left(\frac{r}{a}\right)\ \text{exp} \left(-\frac{r}{2a}\right)\sin \theta\cos\phi \end{align*}
n = 3, l = 0, m = 0¶
\begin{align*} R^{3}_{0}(r) &= \frac{2}{81\sqrt{3}}\left[27-18\left(\frac{r}{a}\right)+2\left(\frac{r}{a}\right)^{2}\right] \ \text{exp} \left(-\frac{r}{3a}\right)\\ Y^{0}_{0}(\theta, \phi) &= \sqrt{\frac{1}{4\pi}}\\ \Psi_{300}(r, \theta, \phi) &= \frac{1}{81\sqrt{3\pi}}a^{-\frac{3}{2}}\left[27-18\left(\frac{r}{a}\right)+2\left(\frac{r}{a}\right)^{2}\right] \ \text{exp} \left(-\frac{r}{3a}\right) \end{align*}
n = 3, l = 1, m = -1¶
\begin{align*} R^{3}_{1}(r) &= \frac{8}{27\sqrt{6}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{-1}_{1} &= \sqrt{\frac{3}{8\pi}} \sin\theta \ \text{exp}\left(-i\phi\right)\\ \text{Normalized }Y^{-1}_{1} &= \frac{1}{2}\sqrt{\frac{3}{\pi}} \sin\theta \sin\phi\\ \Psi_{31-1} &= \frac{4}{27}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\sin\theta\sin\phi \end{align*}
n = 3, l = 1, m = 0¶
\begin{align*} R^{3}_{1}(r) &= \frac{8}{27\sqrt{6}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{0}_{1} &= \sqrt{\frac{3}{4\pi}} \cos\theta\\ \Psi_{310} &= \frac{4}{27}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\cos\theta \end{align*}
n = 3, l = 1, m = +1¶
\begin{align*} R^{3}_{1}(r) &= \frac{8}{27\sqrt{6}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{+1}_{1} &= \sqrt{\frac{3}{8\pi}} \sin\theta \ \text{exp}\left(i\phi\right)\\ \text{Normalized }Y^{+1}_{1} &= \frac{1}{2}\sqrt{\frac{3}{\pi}} \sin\theta \cos\phi\\ \Psi_{311} &= \frac{4}{27}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(1-\frac{r}{6a}\right)\left(\frac{r}{a}\right) \ \text{exp}\left(-\frac{r}{3a}\right)\sin\theta\cos\phi \end{align*}
n = 3, l = 2, m = -2¶
\begin{align*} R^{3}_{2}(r) &= \frac{4}{81\sqrt{30}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{-2}_{2} &= \sqrt{\frac{15}{32\pi}}\sin^{2}\theta \ \text{exp} \ (-2i\phi)\\ \text{Normalized }Y^{-2}_{2} &= \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^{2}\theta\sin 2\phi\\ \Psi_{32-2} &= \frac{1}{81}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\sin^{2}\theta\sin 2\phi \end{align*}
n = 3, l = 2, m = -1¶
\begin{align*} R^{3}_{2}(r) &= \frac{4}{81\sqrt{30}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{-1}_{2} &= \sqrt{\frac{15}{8\pi}}\cos\theta\sin\theta \ \text{exp} \ (-i\phi)\\ \text{Normalized }Y^{-1}_{2} &= \frac{1}{2}\sqrt{\frac{15}{\pi}}\cos\theta\sin\theta\sin\phi\\ \Psi_{32-1} &= \frac{2}{81}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\cos\theta\sin\theta\sin\phi \end{align*}
n = 3, l = 2, m = 0¶
\begin{align*} R^{3}_{2}(r) &= \frac{4}{81\sqrt{30}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{0}_{2} &= \sqrt{\frac{5}{16\pi}}\left(3\cos^{2}\theta -1\right)\\ \Psi_{320} &= \frac{1}{81}\sqrt{\frac{1}{6\pi}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\left(3\cos^{2}\theta -1\right) \end{align*}
n = 3, l = 2, m = +1¶
\begin{align*} R^{3}_{2}(r) &= \frac{4}{81\sqrt{30}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{+1}_{2} &= \sqrt{\frac{15}{8\pi}}\cos\theta\sin\theta \ \text{exp} \ (i\phi)\\ \text{Normalized }Y^{+1}_{2} &= \frac{1}{2}\sqrt{\frac{15}{\pi}}\cos\theta\sin\theta\cos\phi\\ \Psi_{321} &= \frac{2}{81}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\cos\theta\sin\theta\cos\phi \end{align*}
n = 3, l = 2, m = +2¶
\begin{align*} R^{3}_{2}(r) &= \frac{4}{81\sqrt{30}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\\ Y^{+2}_{2} &= \sqrt{\frac{15}{32\pi}}\sin^{2}\theta \ \text{exp} \ (2i\phi)\\ \text{Normalized }Y^{-2}_{2} &= \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^{2}\theta\cos 2\phi\\ \Psi_{32-2} &= \frac{1}{81}\sqrt{\frac{1}{2\pi}}a^{-\frac{3}{2}}\left(\frac{r}{a}\right)^{2} \ \text{exp}\left(-\frac{r}{3a}\right)\sin^{2}\theta\cos 2\phi \end{align*}