Fourier Transform¶
Fourier Series¶
Warning
Equation (1) is only true when x(t) is periodic and satisfies the Direchlet conditions.
Direchlet conditions¶
- x(t) has a finite number of discontinuities in any period
- x(t) has a finite number of maxima and minima in any period
- x(t) is absolutely integrable in any period, i.e.
Note
All periodic signals of practical interest satisfy these conditions.
Further Simplification of Fourier Series¶
If x(t) is real, c_{k} and c_{-k} are complex conjugates. $$ c_{k} = |c_{k}|e^{j\theta_{k}}, c_{-k} = |c_{k}|e^{-j\theta_{k}} $$
We know that \cos(2\pi kF_{0}t + \theta_{k})=\cos(2\pi kF_{0}t)\cos\theta_{k} - \sin (2\pi kF_{0}t)\sin\theta_{k},
Info
This is commonly expressed in many beginner texts on Fourier transform as:
Equivalent Forms of Fourier Series¶
Fourier Series, x(t)¶
- x(t)=\int_{-\infty}^{\infty}c_{k}e^{j2\pi kF_{0}t}
- x(t) = c_{0}+2\sum_{k=1}^{\infty}|c_{k}|\cos(2\pi kF_{0}t + \theta_{k})
- x(t) = a_{0}+\sum^{\infty}_{k=1}(a_{k}\cos 2\pi kF_{0}t - b_{k}\cos 2\pi kF_{0}t),
where a_{0}= c_{0}, \ a_{k} = 2|c_{k}|\cos\theta_{k}, \ b_{k}=2|c_{k}|\sin\theta_{k}
Fourier coefficient¶
- c_{k} = \frac{1}{T_{p}}\int_{T_{p}}x(t)e^{-j2\pi kF_{0}t}\ dt
- when x(t) is periodic and satisfies the Direchlet conditions
Useful Trigonometrical Identities¶
Fourier Transform Theorems and Properties¶
Linearity¶
a_{1}x_{1}(n)+a_{2}x_{2}(n)\xrightarrow{\mathscr{F}}a_{1}X_{1}(\omega)+a_{2}X_{2}(\omega).
Time shifting¶
x(n-k)\xrightarrow{\mathscr{F}}e^{-j\omega k}X(\omega).
- Shifting signal in time domain by k changes phase by -\omega k.
Time reversal¶
x(-n)\xrightarrow{\mathscr{F}}X(-\omega)
- When signal is folded about origin in time, phase spectrum undergoes phase reversal
Convolution¶
x_{1}(n) \ x_{2}(n) \xrightarrow{\mathscr{F}} X_{1}(\omega)X_{2}(\omega)
Wiener-Khintchine theorem¶
r_{xx}(l) \xrightarrow{\mathscr{F}} S_{xx}(\omega)
- Energy spectral density of an energy signal S is the Fourier transform of its autocorrelation sequence R
Frequency shifting¶
e^{j\omega_{0}n}x(n) \xrightarrow{\mathscr{F}} X(\omega-\omega_{0})
- Multiplying e^{j\omega_{0}n} to x(n) is equivalent to translating X(\omega) by \omega_{0}
Modulation¶
x(n)\cos \omega_{0}n \xrightarrow{\mathscr{F}} \frac{1}{2}X(\omega+\omega_{0})+\frac{1}{2}X(\omega-\omega_{0})
Multiplication (Windowing theorem)¶
x_{1}(n) \ x_{2}(n) \xrightarrow{\mathscr{F}} \frac{1}{2\pi}\int_{-\pi}^{\pi}X_{1}(\lambda) \ X_{2}(\omega-\lambda) \ d\lambda
Differentiation in the frequency domain¶
nx(n) \xrightarrow{\mathscr{F}} j\frac{dX(\omega)}{d\omega}
Conjugation¶
x^{*}(n)\xrightarrow{\mathscr{F}}X^{*}(-\omega)
Parseval's theorem¶
\int_{-\infty}^{\infty}x_{1}(n) \ x_{2}^{*}(n) = \frac{1}{2\pi}\int_{-\pi}^{\pi}X_{1}(\omega) \ X_{2}^{*}(\omega) \ d\omega