Control Volume¶
A thermodynamic system where energy and matter is exchanged across its boundary.
Key variables¶
Mass Flow Rate¶
Mass flow rate, \dot{m} = \frac{dm}{dt} = \rho\dot{V} = \rho AV
Unit for mass flow rate: kg s-1
Density¶
Density, \rho = \frac{mass}{volume}
Unit for density: kg m-3
Specific Volume¶
Specific volume, \nu = \frac{1}{\rho}
Unit for specific volume: m3 kg-1
Volumetric flow rate¶
Volumetric flow rate, \dot{V} = AV
Unit for volumetric flow rate: m3 s-1
Conservation of Mass¶
At steady state, \frac{dm_{cv}}{dt} = 0.
\therefore \sum\limits_{i}\dot{m}_{i} = \sum\limits_{e}\dot{m}_{e}
where:
- m_{cv} is the mass of the control volume; and
- \dot{m}_{i} and and \dot{m}_{e} are the mass flow rates at the inlets and exits.
Work for a Control Volume¶
For a control volume with multiple inlets and exits, the work term \dot{W} of a control volume is:
\dot{W} = \dot{W}_{cv}+\sum\limits_{e}\dot{m}_{e}\left(p_{e}\nu_{e}\right)-\sum\limits_{i}\dot{m}_{i}\left(p_{i}\nu_{i}\right)
where:
- \dot{m}_{i} and and \dot{m}_{e} are the mass flow rates at the inlets and exits;
- \nu_{i} and \nu_{e} are the specific volumes at the inlets and exits;
- \dot{m}_{i}\left(p_{i}\nu_{i}\right) and \dot{m}_{e}\left(p_{e}\nu_{e}\right) are the flow work at the inlets and exits; and
- \dot{W}_{cv} is the shaft work across the boundary of the control volume.
Flow and Shaft Work¶
- Flow work is due to the fluid pressure as the mass enters and exits the control volume.
- Shaft work occurs due to rotating shafts, displacement of boundary or electrical effects.
Conservation of Energy for a Control Volume¶
For a control volume with multiple inlets and multiple exits, the energy rate balance is:
\begin{align*} \frac{dE_{cv}}{dt} &= \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(u_{i}+p_{i}\nu_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(u_{e}+p_{i}\nu_{i}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ &= \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(h_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(h_{e}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ &\because \text{Specific enthalpy, }h = u + p\nu \end{align*}
where:
- \dot{E}_{cv} denotes the energy of control volume at time t;
- \dot{Q} denotes the net rate of heat transfer at time t;
- \dot{W} denotes the work across the boundary of the control volume at time t;
- \dot{m}_{i}u_{i} and \dot{m}_{e}u_{e} denotes the rate of transfer of internal energy of the multiple inlets and exits;
- \dot{m}_{i}\frac{V_{i}^{2}}{2} and \dot{m}_{e}\frac{V_{e}^{2}}{2} denotes the rate of transfer of kinetic energy of the multiple inlets and exits; and
- \dot{m}_{i}gz_{i} and \dot{m}_{e}gz_{e} denotes the rate of transfer of graviational potential energy of the multiple inlets and exits.
Assuming specifc heat capacity at constant pressure c_{p} is independent of temperature:
h_{2} - h_{1} = c_{p}\left(T_{2}-T_{1}\right)
Applications of Control Volumes¶
Nozzles and Diffusers¶
- Nozzles increase the velocity of fluid in the direction of fluid flow.
- Diffusers decrease the velocity of fluid in the direction of fluid flow.
\frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(h_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(h_{e}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ \frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\dot{m}\left[\left(h_{i}-h_{e}\right)+\frac{V_{i}^2-V_{e}^2}{2}+\left(gz_{i}-gz_{e}\right)\right] \\ \because \sum\limits_{i}\dot{m}_{i} = \sum\limits_{e}\dot{m}_{e} \ \text{at steady state}\\ \Rightarrow 0 = (h_{1}-h_{2})+\frac{V_{1}^{2}-V_{2}^{2}}{2}
- Net rate of energy \frac{dE_{cv}}{dt} = 0 at steady state;
- Net rate of heat transfer \dot{Q}_{cv} is negligible;
- There is no shaft work \dot{W}_{cv};
- There is only flow work; and
- Change in potential energy \sum\dot{m}\left(gz_{i}-gz_{e}\right) is negligble.
Turbines¶
- Turbines generate power when fluids pass through blades attached to a shaft, which can freely rotate.
\frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(h_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(h_{e}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ \frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\dot{m}\left[\left(h_{i}-h_{e}\right)+\frac{V_{i}^2-V_{e}^2}{2}+\left(gz_{i}-gz_{e}\right)\right] \\ \Rightarrow \dot{W}_{cv} = \dot{m}\left(h_{1}-h{2}\right)
- Net rate of energy \frac{dE_{cv}}{dt} = 0 at steady state;
- Stray heat transfer \dot{Q}_{cv} is negligible;
- Change in kinetic energy \sum\dot{m}\left(\frac{V_{i}^2-V_{e}^2}{2}\right) is negligible; and
- Change in potential energy \sum\dot{m}\left(gz_{i}-gz_{e}\right) is negligble.
Compressors and Pumps¶
- Compressors do work on gases to change the state of gases.
- Pumps do work on liquids to change the state of liquids.
\frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(h_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(h_{e}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ \frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\dot{m}\left[\left(h_{i}-h_{e}\right)+\frac{V_{i}^2-V_{e}^2}{2}+\left(gz_{i}-gz_{e}\right)\right] \\ \Rightarrow \dot{W}_{cv} = \dot{m}\left(h_{1}-h_{2}\right) \\ \because \dot{W}_{cv} < 0, \ \therefore \text{power input required}
- Net rate of energy \frac{dE_{cv}}{dt} = 0 at steady state;
- Stray heat transfer \dot{Q}_{cv} is negligible;
- Change in kinetic energy \sum\dot{m}\left(\frac{V_{i}^2-V_{e}^2}{2}\right) is negligible; and
- Change in potential energy \sum\dot{m}\left(gz_{i}-gz_{e}\right) is negligble.
Heat Exchangers¶
- Heat exchangers transfer heat between two or more fluids.
\frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\limits_{i}\dot{m}_{i}\left(h_{i}+\frac{V_{i}^2}{2}+gz_{i}\right)-\sum\limits_{e}\dot{m}_{e}\left(h_{e}+\frac{V_{e}^2}{2}+gz_{e}\right) \\ \frac{dE_{cv}}{dt} = \dot{Q}_{cv}-\dot{W}_{cv}+\sum\dot{m}\left[\left(h_{i}-h_{e}\right)+\frac{V_{i}^2-V_{e}^2}{2}+\left(gz_{i}-gz_{e}\right)\right] \\ \Rightarrow 0 = \dot{Q}_{cv} + \sum\limits_{i}\dot{m}_{i}h_{i}-\sum\limits_{e}\dot{m}_{e}h_{e}
- Net rate of energy \frac{dE_{cv}}{dt} = 0 at steady state;
- There is no shaft work \dot{W}_{cv};
- There is only flow work;
- Change in kinetic energy \sum\dot{m}\left(\frac{V_{i}^2-V_{e}^2}{2}\right) is negligible; and
- Change in potential energy \sum\dot{m}\left(gz_{i}-gz_{e}\right) is negligible.
Change in Specific Entropy for Ideal Gases¶
\Delta s_{1\rightarrow 2} = s_{2}-s_{1}=c_{v}\ln\left(\frac{T_{2}}{T_{1}}\right)-r \ln\left(\frac{V_{2}}{V_{1}}\right)\\ \Delta s_{1\rightarrow 2} = s_{2}-s_{1}=c_{p}\ln\left(\frac{T_{2}}{T_{1}}\right)-r \ln\left(\frac{P_{2}}{P_{1}}\right)\\ \Delta s_{1\rightarrow 2} = s_{2}-s_{1}=c_{p}\ln\left(\frac{V_{2}}{V_{1}}\right)-c_{v} \ln\left(\frac{P_{2}}{P_{1}}\right)\\